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Abstract The CompCert C compiler provides the formal guarantee that the ob-
servable behaviour of the compiled code improves on the observable behaviour of the
source code. In this paper, we present a formally verified C compiler, CompCertS,
which is essentially the CompCert compiler, albeit with a stronger formal guaran-
tee: it gives a semantics to more programs and ensures that the memory consumption
is preserved by the compiler. CompCertS is based on an enhanced memory model
where, unlike CompCert but like Gcc, the binary representation of pointers can be
manipulated much like integers and where, unlike CompCert, allocation may fail if
no memory is available.

The whole proof of CompCertS is a significant proof-effort and we highlight the
crux of the novel proofs of 12 passes of the back-end and a challenging proof of an
essential optimising pass of the front-end.

Keywords Verified Compilation, Low-level Code, Optimisations, Pointer as Integer

1 Introduction

Over the past decade, the CompCert compiler has established a milestone in com-
piler verification. CompCert is a formally verified C compiler written with the Coq
proof assistant, which initially targeted safety-critical embedded software. The com-
piler comes with a machine-checked proof that it does not introduce bugs during
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compilation [2]. This semantic preservation proof relies on the formal semantics of
the source and target languages of the compiler, and requires that the source program
has a defined semantics. Therefore, CompCert only provides formal guarantees for
programs that do not exhibit undefined behaviours – a property that is in general
undecidable.

CompCert’s memory model is a central component of the compiler. In this pa-
per, we show how to adapt CompCert for a more expressive memory model which
lifts two main limitations. First, memory allocation in CompCert always succeeds,
therefore modelling infinite memory. As a consequence, the compiler does not guar-
antee anything on the memory consumption of the compiled program. In particular,
the compiled program may exhibit a stack overflow. Second, CompCert’s memory
model limits pointer arithmetic: implementation-defined operations on pointers such
as arbitrary comparison or bitwise operations result in an undefined behaviour of the
memory model. This may seem restrictive but this is compliant with the C standard.

In previous work [3], we proposed a more concrete memory model inspired by
CompCert where memory is finite and pointers can be used as integers. On that
basis, we have adapted the proof of 3 passes of CompCert’s front-end [4]. In this
work, we present a fully verified CompCert compiler where 12 remaining passes
have been ported to our new memory model. This compiler is called CompCertS
(for CompCert with Symbolic values). CompCertS gives much stronger guarantees
about the behaviour of arbitrary pointer arithmetic, thus avoiding the miscompila-
tion of programs performing bit-level manipulation of pointers.

CompCertS also provides strong guarantees about the relative memory usage of
the source and target programs. This is challenging because it is unclear how to even
define the memory usage at the C level. We tackle this challenge by first defining the
memory usage of individual functions directly from the C level, and then proving
that compiled programs use no more memory than source programs. In particular,
this ensures that the absence of memory overflow is preserved by compilation.

All the results presented in this paper have been mechanically verified using the
Coq proof assistant. The development is available online [1]. Additionally, we include
links to the online documentation for several definitions and theorems in this paper
under the form of Coq logos .

Our contribution is CompCertS, which is stronger than CompCert in the
following sense: 1) CompCertS offers guarantees for a wider class of programs;
2) CompCertS also offers guarantees about the memory usage of the compiled
program. More precisely, we make the following technical contributions:

– We present the proof of the compiler back-end (12 compiler passes) including
constant propagation, common sub-expression elimination and dead-code elimi-
nation. In particular, we detail how the existing alias analyses of CompCert [19]
benefit from our more defined semantics.

– We show how to instrument the C semantics with oracles specifying the memory
usage of functions, so that the compiler only reduces the memory usage of the
program. We thus ensure that the absence of memory overflow is preserved by
compilation.

The rest of the paper is organised as follows. First, Section 2 gives background
information on CompCert and the symbolic memory model of our previous work [4].
Section 3 gives an overview of the proof effort required to port the majority of the
compiler, and of the proof challenges related to treating pointers as integers. Section 4

http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/../index.html
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describes how we deal with an early pass of CompCert which relies on a subtle
memory injection. Section 5 explains the impact of the symbolic memory model on
optimisations. Section 6 shows how we ensure that the compiler reduces the memory
usage of programs and proves that the absence of memory overflows is preserved.
Section 7 mentions related work and finally, Section 8 concludes.

2 Background on CompCert

This section describes the architecture of the CompCert compiler [14]. It also sum-
marises the main features and properties of our memory model [3,4]. Our work is
based on version 2.4 of CompCert.

2.1 Architecture of the CompCert Compiler

CompCert compiles C programs into assembly code, through 8 other intermediate
languages. The same memory model is shared by all the languages of the compiler.
Each language is given a formal semantics in the form of a state transition system.
The semantics observe behaviours that are either defined behaviours, with a trace
of I/O events (this trace is finite for terminating programs, or infinite for diverging
programs), or undefined behaviours.

Every transformation from one language to another is proved to be semantics
preserving using simulation relations, relating the states of the source and target
programs with some matching relation. In particular, the trace of I/O events that
they emit must be the same. The proof technique most commonly used in CompCert
is forward simulations, where every step in the source language is matched with a
number of steps in the target language. The heart of a forward simulation proof is
captured by Theorem 1.

Theorem 1 (Forward Simulation) Given a source program and a target program
represented by their state transition systems →S and →T , there is a forward sim-
ulation between those programs through the simulation relation ∼ if and only if for
any states S1 and S2 related by ∼, any step taken from S1 can be simulated by a
(sequence of) step(s) from S2 such that the resulting states are still related by ∼.
Mathematically,

∀ S1 ∼ S2, ∀ S′
1, S1

e−→S S′
1 ⇒ ∃ S′

2, S2
e−→

+

T S′
2 ∧ S′

1 ∼ S′
2,

where e is the trace of emitted I/O events.

The final compiler correctness theorem is about behaviour preservation. Be-
haviours are built on (possibly infinite) traces of events, in the following way, where
t are finite traces and τ is an infinite trace:

beh , Terminates(t) | Diverges(t) | Reacts(τ) | Wrong(t).
The behaviour Terminates(t) corresponds to an execution that terminates nor-

mally after emitting the trace of events t. The behaviour Diverges(t) is the execution
of a program emitting t, and then loops silently (i.e. without emitting events) forever.
Reacts(τ) is the behaviour of an execution that never terminates but still emits mes-
sages, resulting in the infinite trace τ . Finally, the behaviour Wrong(t) corresponds to
a program that goes wrong (i.e. triggers undefined behaviour) after having emitted
the finite trace t.
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val 3 v := int(i) | ptr(b, o) | undef
memval 3 mv := Byte(x) | Pointer(b, o, n) | Undef

Fig. 1: Run-time and memory values

Given some hypotheses about the determinism of the target language, we can
transform the forward simulation proofs into a behaviour preservation theorem stat-
ing that every behaviour of the compiled program is a behaviour of the source pro-
gram, i.e. the compiler has not introduced bugs.

The composition of the simulation lemmas for all the compiler passes forms the
compiler semantic preservation theorem given below.

Theorem 2 (CompCert’s semantic preservation) Suppose that tp is the result
of the successful compilation of the program p. If bh ′ is a behaviour of tp then there
exists a behaviour bh such that bh is a behaviour of p and bh ′ improves on the
behaviour bh.

bh ′ ∈ ASem(tp) ⇒ ∃bh.bh ∈ CSem(p) ∧ bh ⊆ bh ′

In the theorem, CSem gives the semantics of C programs and ASem gives the se-
mantics of assembly programs. Moreover, a behaviour bh ′ improves on a behaviour
bh (written bh ⊆ bh ′) if either bh and bh ′ are the same, or undefined behaviours in
bh are replaced by defined behaviours in bh ′.

2.2 The Memory Model of CompCert

The memory model of CompCert is the cornerstone of the semantics of all the
intermediate languages. It consists of a collection of separated blocks, where blocks
are arrays of a given size. A value v ∈ val (see Fig. 1) can be either a 32-bit integer
int(i), a pointer or the token undef. A pointer is a pair ptr(b, o) consisting of a
block identifier b and an offset o. CompCert also features 64-bit integers, single
and double precision floating-point numbers, which we ignore in this paper for the
sake of simplicity. To allow fine-grained access to the memory, CompCert does
not store values directly in the memory. Rather, values are encoded as sequences of
byte-sized memory values called memval that describe the content of a memory block.
They are either concrete 8-bit integers Byte (x), a special Undef byte that represents
uninitialised memory, or a byte-sized fragment of a symbolic pointer value Pointer

(b, o, n) (read: n-th byte of pointer ptr(b, o)). Therefore, a pointer ptr(b, o) is encoded
in memory as a sequence of 4 memvals, from Pointer(b, o, 0) to Pointer(b, o, 3). (The
version of CompCert that this works build upon, v2.4, only supports 32-bit pointers,
hence 4 memvals. More recent versions support 64-bit pointers, made of 8 memvals.)
The memory model exports four main operations: load reads values from the memory
at a given address (a block and an offset), store writes values into the memory at a
given address, alloc allocates a new block and free frees a given block.

2.3 A Symbolic Memory Model for CompCert

In previous work [3,4], we extended CompCert’s memory model and gave semantics
to pointer operations by replacing the value domain val by a more expressive do-
main sval of symbolic values. This low-level memory model enables reasoning about
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struct rb_node {
uintptr_t rb_parent_color ;
struct rb_node ∗rb_right ;
struct rb_node ∗rb_left ; };

#define rb_color(rb) (((rb)−> rb_parent_color) & 1)
#define rb_parent(r) \

(( struct rb_node ∗) (( r)−> rb_parent_color & ∼3))

Fig. 2: Red-black tree implementation in Linux

sval 3 sv := val | unop(uop, sv) | binop(bop, sv1, sv2)
smemval 3 smv := Symbolic(sv , n)

Fig. 3: Symbolic run-time and memory values

the bit-level encoding of pointers within CompCert. In this section, we first give
a motivating example; then we recall the principles of symbolic values and their
normalisation.

2.3.1 Motivation for Pointers as Integers.

Fig. 2 shows an example of C code that benefits from our low-level memory model.
This is an implementation of red-black trees which belongs to the Linux kernel. A
node in a red-black tree (type rb_node) contains an integer rb_parent_color and
two pointers to its children nodes. The integer rb_parent_color encodes both the
color of the node and a pointer to the parent node. The rationale for this encoding
is as follows: 1) pointers to rb_nodes are at least 4-byte aligned, therefore the two
trailing bits are zeros; and 2) the color of a node can be encoded with a single
bit. Retrieving each piece of information from this encoding is implemented by the
two macros rb_color and rb_parent shown in Fig. 2. To get the parent pointer,
the macro clears the two trailing bits using a bitwise & with ∼ 3 (i.e. 0b1 . . . 100).
In CompCert, these operations are undefined because of the bitwise operations on
pointers. In CompCertS, these operations are defined and therefore this kernel code
can be safely compiled without fear of any miscompilation.

2.3.2 Symbolic Values.

A symbolic value sv ∈ sval (see Fig. 3) is either a value v or an expression built from
unary and binary C operators over symbolic values. Memory values memval are also
generalised into symbolic memory values smemval, which have a single constructor
Symbolic(sv , n), denoting the n-th byte of a symbolic value sv . This constructor is
inspired from the Pointer (·, ·, ·) constructor of CompCert (see Fig. 1) and subsumes
the three existing cases.

Building symbolic values instead of the token undef for undefined operations
delays the challenge of giving more semantics to C expressions. However, symbolic
values cannot be kept symbolic indefinitely. To perform memory accesses at an ad-
dress represented by the symbolic value addr, the address addr must be normalised
into a genuine pointer ptr(b, o). Similarly, the condition cond of a conditional state-
ment must be normalised into an integer int(i) to decide which branch to follow. The
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normalisation is specified as a function normalise which takes as input a memory
state m and a symbolic value sv , and outputs a value v. Its specification relies on
the notions of concrete memories valid for a memory state m, and of evaluation of
expressions that we recall below.

An intuitive way to think about symbolic values is in terms of intermediate
values that do not make sense immediately, but can be soundly used to later produce
regular values, just like how complex numbers were first introduced in mathematics
as intermediate values to solve cubic equations.

2.3.3 Concrete Memories and Evaluation.

A concrete memory is a mapping from blocks to concrete addresses, represented as
32-bit integers. In addition to the permissions and memory contents associated to
blocks in CompCert, we also associate with each memory block b a size size and an
alignment constraint al . We say a pointer ptr(b, o) is valid if the offset o is within
the bounds [0, size[, written valid(m, b, o). The size and alignment of a block b can
be retrieved with the accessors size(m, b) and align(m, b).

Definition 1 A concrete memory cm is valid for a memory state m (cm ` m) if
the following conditions hold:

1. Valid addresses lie within the address space, i.e.
∀ b o, valid(m, b, o) ⇒ cm(b) + o ∈ ]0; 232 − 1[.

2. Valid pointers from distinct blocks do not overlap, i.e.
∀ b b′ o o′, b 6= b′ ∧ valid(m, b, o) ∧ valid(m, b′, o′) ⇒ cm(b) + o 6= cm(b′) + o′.

3. Addresses are properly aligned, i.e. ∀ b, 2align(m,b) | cm(b).

We exclude the address 0 from valid addresses because it represents the NULL
pointer and is therefore invalid. We also exclude the address 232 − 1 so that weakly-
valid pointers, i.e. pointers one past the end of an object, are also valid. (See the C
standard [10], section 6.5.8.5 (Relational operators) for a discussion of pointers one
past the end.)

The evaluation of a symbolic value sv in a concrete memory cm (written JsvKcm)
consists in replacing pointers with their integer value (according to cm) and then
evaluating the resulting expression with standard integer operations.

Example 1 Consider for example a concrete memory cm that maps a block b to the
address 32. The evaluation of the symbolic value sv = ptr(b, 5)& int(1) results in
int(1) because JsvKcm = (cm(b) + 5)&1 = (32 + 5)&1 = 37&1 = 1.

2.3.4 Specification of the Normalisation.

Rather than defining an algorithm for the normalisation, we specify its behaviour
through a relation is_norm m sv v, where m is a memory state, sv is a symbolic
value and v is a value. This predicate is defined as follows.

Definition 2 (Sound normalisation) A value v is a sound normalisation of sv in
m, if v and sv evaluate identically in every concrete memory cm valid for m.

is_norm m sv v , ∀cm ` m ⇒ JsvKcm = JvKcm.

http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/NormaliseSpec.html#compat
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b1

b2

b3

b′

δ1

δ2

f(b1) = b(b′, 0)c
f(b2) = b(b′, δ1)c
f(b3) = b(b′, δ2)c

Fig. 4: Injecting several blocks into one

We prove that this relation is deterministic, i.e. any two values v1 and v2 that are
sound normalisations of the same symbolic value sv in the same memory state m are
necessarily the same. However, this is only true if at least one valid concrete memory
exists for any memory state m, otherwise any value v would be a sound normalisation
of any symbolic value sv . We enforce this property by restricting the allocation
operation of the memory model of CompCert so that it fails if no concrete memory
can be constructed. This is explained in great detail in [5]. We will discuss additional
aspects related to finite memory in Section 6 in this article. For convenience, in the
rest of this article, we will refer to the normalisation as the function normalise,
which returns a value v that is a sound normalisation when such a value exists, and
undef otherwise.

Example 2 Consider a program which stores information in the 2 least significant
bits of a 4-byte aligned pointer (cf. Fig. 2). The symbolic value after setting the last
2 bits of a pointer ptr(b, 0) is sv = ptr(b, 0) | 3. To recover the original pointer, the
last two bits can be cleared by the following bitwise manipulation: sv ′ = sv & ∼ 3.
We have that sv ′ normalises into pointer ptr(b, 0) because for any valid concrete
memory cm:

Jsv ′Kcm = J(ptr(b, 0) | 3)& ∼ 3Kcm = (cm(b) | 3)& ∼ 3 = cm(b)
The last rewriting step is justified by the alignment constraints of block b. Since

Jptr(b, 0)Kcm = cm(b) for any cm, then sv ′ normalises into ptr(b, 0).

2.4 Memory Injections

Memory injections are CompCert’s central notion to formalise the effect of merging
blocks together; they are used to specify the passes that transform the memory
layout. The stereotypical example is the construction of stack frames, which happens
during the transformation from C]minor to Cminor. At the C]minor level, each local
variable is allocated in its own block. In Cminor, a single block contains all the
local variables, stored at different offsets. This mapping from local variable blocks in
C]minor to offsets in the stack block in Cminor is captured by a memory injection.
A memory injection is characterised by an injection function f : block → bblock ×Zc
that optionally associates with each block a new block and an offset within that
block. For example, in Fig. 4, the blocks b1, b2 and b3 are injected by f into the
single block b′, at different offsets.

In addition to reflecting the structural relation between memory states, injections
also relate the contents of the memory states. Values that are stored at corresponding
locations are required to be in injection. Two values v1 and v2 are in injection if 1) v1
is undef, or 2) v1 and v2 are the same non-pointer value, or 3) v1 is ptr(b, o), v2 is
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ptr(b′, o + δ) and f(b) = b(b′, δ)c1. For example, in Fig. 4, the pointer ptr(b2, o) is
in injection with the pointer ptr(b′, o+ δ1).

Two symbolic values are in injection (see [4]) if they have the same structure (the
same operators are applied) and the values at the leaves of each symbolic value are in
injection. In [4], we proved a central result that relates injections and normalisations,
recalled in Theorem 3.

Theorem 3 For any total injection f , for any memory states m1 and m2 in injec-
tion by f , for any symbolic values sv1 and sv2 in injection by f , the normalisations
of sv1 in m1 and of sv2 in m2 are in injection by f .

This theorem has the precondition that f must be a total injection, i.e. all non-
empty blocks must be injected (i.e. f(b) 6= ∅). In this paper, one of our contributions
is a generalisation of Theorem 3, which covers the case of more general injections. As
we shall see in Section 4, it is required to prove the SimplLocals pass of CompCert.

3 Overview of the Compiler Proof

This paper addresses the challenge of porting the CompCert compiler to our se-
mantics with symbolic values, where pointer operations behave as integer operations,
e.g. bitwise operators are defined on pointers and memory is bounded. Fig. 5 gives
an overview of the 19 compiler passes of CompCert, together with the kind of sim-
ulation relations that are used to prove them. Three such relations between memory
states are defined: memory equalities, memory extensions and memory injections.
They share a common basis, the notions of memory embeddings, defined in [15].
Memory equalities are used by passes that do not modify the memory at all, neither
its structure nor its contents. Memory extensions are used by passes that do not
modify the structure of the memory, but are allowed to specialise the values stored
in the memory (e.g. , transform an undef value into any other value). Finally, as
explained in the previous section, memory injections are used for passes that modify
the structure of the memory.

Our changes to the semantics of the individual languages consist mainly in in-
serting normalisations before memory accesses and conditionals. These changes are
reflected in the semantic preservation proofs, where we now have to account for the
preservation of normalisations.

The compiler passes that are proved based on the equality simulation relation are
the simplest to port. The passes based on memory extensions and memory injections
require additional lemmas about the preservation of normalisations with respect to
these memory relations, and the passes based on memory injections operate the most
difficult memory transformations of the compiler.

In the rest of this paper, we will focus on three particular aspects of our proof
effort. First, in Section 4 we address the problems raised by the SimplLocals pass
of CompCert, which modifies the structure of the memory, and uses a kind of
memory injection that is not covered by our previous work [5]. Then, in Section 5
we explain the challenges related to optimisations, and in particular the notion of
pointer provenance. The existing pointer analysis in CompCert needs to be refined,
so that it is correct in our symbolic setting. Finally, in Section 6 we describe the

1 b·c denotes the option type. We write bvc for Some(v) and ∅ for None.

http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/Memory.html#Mem.norm_inject
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Language / Pass Simulation relation
Frontend
C
Cstrategy equality
SimplExpr equality
Clight
SimplLocals injection
C]minorgen extension
C]minor
Cminorgen injection
Backend
Cminor
Selection extension
CminorSel
RTLgen extension

Language / Pass Simulation relation
RTL
Tailcall extension
Inlining injection
Renumber equality
Constprop extension
CSE extension
Deadcode extension
Allocation extension
LTL
Tunneling equality
Linearize equality
Linear
CleanupLabels equality
Stacking injection
Mach
Asmgen extension
Assembly

Fig. 5: Overview of the compiler passes and the simulation relations used

implications of having a bounded memory model in CompCert. In particular, we
need that every compiler pass reduces the memory usage of programs, and we show
how we ensure this is in fact the case in CompCertS.

4 Proving the Correctness of SimplLocals

The SimplLocals compiler pass is one of the earliest in CompCert. Its source lan-
guage is Clight, a stripped-down dialect of C where expressions are side-effect-free.
The purpose of this pass is to pull out of memory the local scalar variables that do
not need to reside in memory: those whose address is never taken. Those variables
are transformed into temporaries, i.e. pseudo-registers, upon which most subsequent
optimisations operate.

4.1 Arguments for the correctness of SimplLocals .

In CompCert, the correctness of this compiler pass relies on memory injections.
The blocks corresponding to variables that are not transformed into temporaries
are injected into themselves (i.e. f(b) = bb′, 0c), while the blocks corresponding to
variables that are transformed into temporaries are not injected (i.e. f(b) = ∅).

The core difficulty of porting the proof of SimplLocals to the symbolic setting
resides in proving that normalisations are preserved by injections. In previous work,
we have established Theorem 3 which proves this preservation for total injections.
Here, the injection is partial (i.e. some blocks are not injected) and therefore Theo-
rem 3 does not apply. The following example illustrates the challenge of dealing with
partial injections.

Example 3 For the sake of simplicity, consider a memory size of 32 bytes and a
memory state m1 with two blocks b and b′ which are both 4-byte aligned: b of size 8
and b′ of size 16. We show in Fig. 6a the only two possible concrete memories, where
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0 4 8 12 16 20 24 28 32

bb′

b′b

(a) Before injection

0 4 8 12 16 20 24 28 32

b

b

b

(b) After injection

Fig. 6: Concrete memories and partial injections

b is the darker block and b′ is the lighter one. Note that no block can be assigned
the address 0 nor the address 28, as per Definition 1.

Consider the symbolic value sv = ptr(b, 0)! =16. It normalises into 1 in m1,
because b is never allocated at address 16 in any concrete memory valid for m1.
Indeed, this address is always occupied by block b′. Now consider a memory state
m2 where the block b′ has been pulled out of memory. Fig. 6b shows that in m2 it
is, of course, still possible to allocate block b at addresses 4 and 20. However, there
is a new possible configuration where block b can be allocated at address 16. The
normalisation of sv is now undefined because sv evaluates to different values (1 or
0) depending on the concrete memory used. This contradicts Theorem 3, which we
are trying to prove.

The essence of the problem illustrated by the above example is that blocks may
have more allowed positions after the injection than before, meaning that the set
of valid concrete memories is larger after the injection. Therefore, the normalisation
may be less defined after a partial injection and Theorem 3 cannot be generalised
for arbitrary partial injections.

4.2 Well-behaved injections.

We identify a restricted class of well-behaved injections functions f , for which we
show that blocks that are injected by f (those for which f(b) 6= ∅) do not gain new
valid concrete addresses after the injection. The criterion for well-behavedness of
injection functions f is stated in Definition 3.

Definition 3 (Well-behaved injection) An injection function f is said to be
well-behaved if the blocks that are forgotten by f are at most 8-byte wide and at
most 8-byte aligned. Formally,

well_behaved (f,m) , ∀ b, f(b) = ∅ ⇒ size(m, b) ≤ 8 ∧ align(m, b) ≤ 8.

The injection used for the correctness proof of SimplLocals satisfies this con-
straint because only scalar variables may be removed from the memory, i.e. the
largest are long-typed variables that are 8-byte wide and 8-byte aligned. Using such
well-behaved injections, we can prove Lemma 1, from which a generalised version of
Theorem 3 can be derived, as we explain at the end of this section.

Lemma 1 Let f be a well-behaved injection function. Let m1 and m2 be memory
states in injection by f . For every concrete memory cm2 valid for m2, there is a

http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/InjectWellBehaved.html#inject_well_behaved
http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/InjectWellBehaved.html#forget_compat
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b1 b2 b3 cm2 ` m2

b1 b2 b3 canon_cm(m2) ` m2

b1 b2 b3 b4 b5 canon_cm(m1) ` m1

b1 b2 b3b4 b5 cm1 ` m1

0 8 16 24 32 40 48

Fig. 7: Inverting partial injections.

corresponding concrete memory cm1 valid for m1, such that every non-forgotten block
has the same address in cm1 and cm2. Formally,
∀f, well_behaved f ⇒

∀ m1 m2, mem_inject f m1 m2 ⇒ ∀ cm2 ` m2, ∃ cm1 ` m1 ∧ cm1 ≡f cm2

where cm1 ≡f cm2 , ∀ b b′, f(b) = b(b′, 0)c ⇒ cm1(b) = cm2(b
′)

The problem that Lemma 1 solves can be thought of as follows: for every concrete
memory cm2 valid for m2 (cm2 ` m2), it is possible to insert back all the blocks
that have been forgotten by f , without moving the others. In other words, all block
positions that are allowed in m2 were already allowed in m1, therefore we avoid the
problems illustrated by Example 3.

The proof of Lemma 1 goes by counting 8-byte wide and 8-byte aligned regions
of memory that we call boxes, delimited by dashed lines in Fig. 7. Our allocation
algorithm [4] entails that for every memory state m, there exists a concrete memory
cm that we call the canonical concrete memory of m and write canon_cm(m), that
is built by allocating all the blocks of m at maximally-aligned, i.e. 8-byte aligned,
addresses. We call nbox(cm) the number of used boxes for a given concrete memory
cm. For example, we have nbox(cm2) = 2, and nbox(canon_cm(m2)) = 3. In general,
thanks to alignment constraints, we have that for any memory m and any concrete
memory cm valid for m, cm uses no more boxes than canon_cm(m), i.e. nbox(cm) ≤
nbox(canon_cm(m)). This is a direct consequence of the relation between the size and
the alignment properties of blocks. More precisely, a block b of size s has an alignment
m such that s < 2m, when b is a small block (smaller than 8 bytes, i.e. those that are
likely to be forgotten). Due to this alignment property, a properly aligned small block
cannot span over more than 1 box. Larger blocks are 8-byte aligned and therefore
use as many boxes in any valid concrete memory. This reasoning could be extended
to slightly different definitions of well-behaved injections where larger blocks can be
forgotten, hence considering larger boxes, so that properly aligned forgotten blocks
never span over more than 1 box.

Consider now two memory states m1 and m2 in injection by some well-behaved
injection function f , such that m2 is the result of forgetting F blocks from m1. We
have that nbox(canon_cm(m2)) = nbox(canon_cm(m1)) − F . This can be verified
on Fig. 7, where F = 2 blocks have been forgotten, nbox(canon_cm(m1)) = 5 and
nbox(canon_cm(m2)) = 3, indeed satisfying the equation.
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Starting from a concrete memory cm2 ` m2, we derive that nbox(cm2) + F ≤
nbox(canon_cm(m1)). In other words, it is possible to find F free boxes in cm2. In our
example, those 2 boxes can be for example the boxes [8; 16[ and [24; 32[. Because the
blocks we forgot each fit in a box, all we have to do at this point is fill each of these
F boxes in cm2 with the F forgotten variables. The result is the concrete memory
cm1 shown in the last line of Fig. 7.

Theorem 4 is the generalised version of Theorem 3 for well-behaved injections.

Theorem 4 For any well-behaved injection f , for any memory states m1 and
m2 in injection by f , for any symbolic values sv1 and sv2 in injection by f , the
normalisations of sv1 in m1 and of sv2 in m2 are in injection by f .

Proof The proof is performed in two steps.

– First, we exhibit some value v such that the normalisation of sv1 injects into
v. This shows that if the normalisation of sv1 is a pointer, then this pointer is
injected by f . This is a consequence of the fact that sv1 is injected into another
symbolic value.

– Then, we show that this v is necessarily the normalisation of sv2 in m2. This
boils down to showing that: ∀ cm2 ` m2, JvKcm2 = Jsv2Kcm2 . Using Lemma 1
and the specification of the normalisation, we conclude this proof.

This theorem is a central piece of the proof of the SimplLocals pass, which is now
fully proved in CompCertS. It is worth noting that we did not modify the behaviour
of the SimplLocals pass. The work we have done here is simply to strengthen the
proof so that the original SimplLocals pass is still correct with our more defined
semantics, in particular with respect to the set of valid concrete memories across
memory injections.

5 Optimisations

CompCert features several standard optimisations. Among them, constant propa-
gation, strength reduction and common sub-expression elimination exploit the result
of a dataflow analysis computing the combination of a numeric analysis and an alias
analysis. In this section, we explain why the existing dataflow transfer functions are
not sound for CompCertS and how to fix them. This demonstrates that the seman-
tics of CompCertS is a provably strong safeguard preventing the miscompilations
of low-level pointer arithmetic.

For the sake of explanation, we will present a simplified version of CompCert’s
abstract domains and transfer function that is sufficient for our needs. A more thor-
ough description can be found in [19].

5.1 The abstract value domain of CompCert

The abstract value domain of CompCert is made of a pointer domain and a numeric
domain. The purpose of the pointer domain is to infer aliasing information and get
an abstract model of memory reads and writes. In particular, if the current stack
pointer does not escape through global variables or arguments of functions, the

http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/InjectWellBehaved.html#forget_norm
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1 rb_node∗ get_parents_right_child(rb_node∗ r){
2 // r : (¬Stack ,>)
3 uintptr_t rpc = r−>rb_parent_color ;//get the parent/color f ie ld
4 // rpc : (¬Stack ,>)
5 rb_node∗ p = (rb_node∗) (rpc & ∼3);//get the parent of r
6 // p: (⊥,>)
7 rb_node∗ rchild = p−>rb_right ; // access i ts right child
8 // ∅
9 return rchild ; }

Fig. 8: Aggressive dataflow analysis for red-black trees

compiler gets the valuable information that the content of the current stack frame
cannot be modified by function calls. A representative but simplified abstract domain
of pointers, aptr , is given below.

aptr ::= ⊥ | Stk ofs | Stack | ¬Stack | >
Its semantics is given by its concretisation function γsb where sb stands for the
memory block of the current stack frame. The empty set of pointers is denoted by
⊥. Stk o represents the stack pointer ptr(sb, o). The set of all pointers to the current
stack frame (block sb at any offset) is captured by Stack . All pointers to blocks
different from the stack block sb are abstracted by ¬Stack . Finally, > is the set of
all pointers.

γsb(⊥) = {}
γsb(Stk o) = {ptr(sb, o)}
γsb(Stk) = {ptr(sb, o) | o ∈ int}
γsb(¬Stack) = {ptr(b, o) | b 6= sb ∧ o ∈ int}
γsb(>) = {ptr(b, o) | b ∈ blocks ∧ o ∈ int}

The numeric domain anum tracks constant values and intervals of the form [0; 2n−1]
and [−2n; 2n−1].

anum ::= ⊥ | Cst c | [0; 2n − 1] | [−2n; 2n − 1] | >
Conceptually, the domain of abstract values is of the form aval = aptr × anum such
that γsb(ap, an) = γsb(ap)∪ γn(an). The union of concretisations is relevant because
a value can be either a pointer or an integer but not both. Moreover, as certain
operators may return the value undef, undef belongs to every concretisation of the
numeric domain i.e. undef ∈ γn(⊥).

According to the original semantics of CompCert, the bitwise conjunction &
between a pointer ptr(b, o) and an integer int(i) returns undef. As a result, the
most precise transfer function for the bitwise & is such that

(p,>)&(⊥,>) = (⊥,>)
For the pointer part, it returns ⊥ because a bitwise & with a pointer argument
returns undef (it cannot be a pointer). For the integer part, it returns > because a
bitwise & between arbitrary integers is still an arbitrary integer. This formulation is
semantically sound. Yet, as shown by Example 4, this aggressive transfer function
can be responsible for miscompilation.

Example 4 Consider the red-black tree code of Fig. 8. The code is annotated by the
result of a sound dataflow analysis using the previous domain. At function entry, the
current stack frame has just been created and is therefore free of aliases. As a result,
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the parameter r and the local variable rpc can be abstracted by (¬Stack,>). Line 6,
the aggressive analysis is using the previous transfer function for the bitwise & and
obtains (⊥,>) for the abstraction of p. This makes the reasoning that p can only be
an integer. As the dereference of an integer has no semantics, the aggressive analysis
infers that the rest of the code is not reachable. Line 8, this is encoded by ∅. Based on
this information, a live-variable analysis and an aggressive dead-code removal could
replace the whole function body by a no-op which is obviously a miscompilation.

To avoid such dramatic effects, the transfer functions of CompCert are written with
prudence with the objective of preventing miscompilations and “[track] leakage of
pointers through arithmetic operations”.2 This is done by computing carefully crafted
transfer functions which are purposely non-optimal in order to prevent aggressive
optimisations (which would be sound by relying on undefined behaviours of the
CompCert semantics). For instance, the transfer function for the bitwise & becomes:

(p,>)&(⊥,>) = (p̂,>)
where p̂ reads as provenance of the pointer p and has the informal meaning that the
result is some value derived from the pointer p and is defined by:

p̂ = if p = Stk o then Stack else p.

This formulation is semantically sound and prudent. Yet, this is not completely
satisfactory because it is not grounded on any palpable semantics notion.

5.2 A formally prudent dataflow analysis.

With our semantics, the program of Figure 8 may have a defined semantics, hence
the aggressive dataflow analysis of Example 4 is not sound and therefore no such
miscompilation can occur. The reason is that, for our semantics, arithmetic opera-
tions (e.g. the bitwise &) are always defined and compute symbolic values. To adapt
the existing abstract domains to our semantics, we need to adapt the concretisation
so that they denote symbolic values instead of values. A direct lifting consists in
using the evaluation of symbolic values. This approach is effective for the numeric
domain and we get: γ∗n(an) = {sv | ∀cm, JsvKcm ∈ γn(an)}.

For the pointer domain, the same lifting is such that the concretisation of the
Stack element represents any symbolic value whose evaluation has value JsbK+ o for
some o. As o is unrestricted, this concretisation captures any symbolic expression
and collapses with the > element. A more restricted lifting could be based on the
normalise function. This appealing option is however too restrictive because it rules
out symbolic values which may not have a normalisation. Interestingly, we eventually
noticed that, to get a concretisation that is both sound and robust to syntactic
variations, what was needed was a formal account of pointer tracking. It is formalised,
using Definition 4, by a notion of pointer dependence of a symbolic value sv with
respect to a set S of memory blocks.

Definition 4 A symbolic value sv depends at most on the set of blocks S if sv

evaluates identically in concrete memories that are identical for all the blocks in S.
Formally, we have:

dep(sv , S) , ∀ cm ≡S cm ′, JsvKcm = JsvKcm′

where cm ≡S cm ′ , ∀ b ∈ S, cm(b) = cm ′(b).
2 See https://github.com/AbsInt/CompCert/blob/

a968152051941a0fc50a86c3fc15e90e22ed7c47/backend/ValueDomain.v#L707.

http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/ExprEval.html#depends_on_blocks
https://github.com/AbsInt/CompCert/blob/a968152051941a0fc50a86c3fc15e90e22ed7c47/backend/ValueDomain.v#L707
https://github.com/AbsInt/CompCert/blob/a968152051941a0fc50a86c3fc15e90e22ed7c47/backend/ValueDomain.v#L707
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Note that, for any other block b /∈ S, the memory may differ arbitrarily. The con-
cretisation function γ∗sb, where sb is the current stack block, is defined in Fig. 9 .

γ∗
sb(⊥) = {}

γ∗
sb(Cst) = {sv | dep(sv , ∅)}

γ∗
sb(Stk o) = {sv | ∀cm, JsvKcm = cm(sb) + o}

γ∗
sb(Stack) = {sv | dep(sv , {sb})}

γ∗
sb(¬Stack) = {sv | dep(sv , block \ {sb})

γsb(>) = {sv | sv ∈ sval}

Fig. 9: CompCertS concretisation for the pointer domain

Intuitively, Cst represents any symbolic value which always evaluates to the
same value whatever the concrete memory (i.e., it does not depends on point-
ers); Stack represents any symbolic value which depends at most on the current
stack block sb and ¬Stack represents any symbolic value which may depend on any
block except the current stack block sb. Our abstract domain is still a pair of val-
ues (ap, an) ∈ aptr × anum but it represents a (reduced) product of domains. For
symbolic values, there is no syntactic distinction between pointer and integer values.
Hence, the concretisation is given by an intersection of concretisations (instead of a
union): γsb(ap, an) = γsb(ap) ∩ γn(an).

In CompCert, a prudent transfer function for the pointer domain is defined by
p̂1 t p̂2. Theorem 5 gives the formal guarantee that this transfer function is sound
for our semantics.

Theorem 5 Suppose that sv1 is modelled by the abstract pointer p1 and sv2 is
modelled by the abstract pointer p2. The symbolic value sv1 on sv2 is modelled by the
least upper bound of the provenance of p1 and p2 i.e.

sv1 ∈ γsb(p1) ∧ sv2 ∈ γsb(p2) ⇒ sv1 on sv2 ∈ γsb(p̂1 t p̂2)

Depending on the operator, the transfer function can be specialised sometimes
using additional information from the numeric domain. In particular, for bitwise
operators, we have the following transfer functions.

p1&p2 = if p1 = p2 = Stk o then Stk o else p̂1 t p̂2
p1 | p2 = if p1 = p2 = Stk o then Stk o else p̂1 t p̂2
p1^p2 = if p1 = p2 = Stk o then Cst else p̂1 t p̂2

When the pointer is known to be a constant of the form ptr(sb, o), the transfer
functions exploits numeric properties of bitwise operators. In particular, they exploit
the property that bitwise & and bitwise | are idempotent i.e.

ptr(sb, o)&ptr(sb, o) = ptr(sb, o) | ptr(sb, o) = ptr(sb, o)
For bitwise ^, we have that ptr(sb, o)^ptr(sb, o) = int(0). In the pointer domain,
the most precise abstraction is Cst . This is however an example where the pointer
domain may refine the numeric domain as we have:

(Stk o,>)^(Stk o,>) = (Cst , [0 ; 0 ])
While adapting the proof, we found and fixed several minor but subtle bugs

in CompCert related to pointer tracking, where the existing transfer functions
were unsound for our low-level memory model. Though unlikely, each of them could
potentially be responsible for a miscompilation. For instance, the right shift operator
x >> y ignores the leak of information that would be due to the shift amount y.

http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/ValueDomain.html#epmatch
http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/ValueDomain.html#epmatch_binop_lub
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Though it makes little sense to pass a pointer as a shift amount, there is nonetheless
some form of information flow that is captured by our semantics and forces our
transfer function to include the dependence ŷ.

Using its more conservative dataflow analysis, CompCertS forbids program
transformations that are otherwise valid for CompCert but may result in mis-
compilations. In this particular case, we generate the right code not because our
optimisations are designed with prudence but because our more defined semantics
provides a formal safeguard.

5.3 Instruction selection and symbolic values

For dataflow analysis, our semantics makes optimisations more conservative. Yet, a
more defined semantics may also enable new optimisations that would be unsound
for a less defined semantics. This phenomenon has already been observed e.g. by
Muellen et al. [17] in the context of peephole optimisations for CompCert. The
motivating example of Muellen et al. essentially transforms the expression y − x− 1
into y+~x where ~ is bitwise negation. In CompCert, the transformation is unsound
because when x and y are pointers to the same block e.g. ptr(b, o) and ptr(b, o′), the
expression y− x− 1 evaluates to int(o′ − o− 1) but the expression y+ ~x evaluates
to undef because of the bitwise negation that is undefined for pointers. With our
semantics, both expressions have the same evaluation:

Jy − x− 1Kcm = Jy + ~xKcm .

and therefore the transformation is sound. We have introduced it in the instruction
selection pass which performs strength reduction over the subtraction operator .

There are nonetheless standard transformations that our semantics is unable
to validate. For instance, an efficient way of setting a register r to 0 consists in
performing a bitwise ^ with itself. Unfortunately, we cannot prove that the symbolic
values 0 and sv^sv have always the same evaluation. A counterexample is when sv

evaluates to undef because
J0Kcm 6= JundefKcm^JundefKcm = undef.

For our semantics, this is a corner case because the optimised expression depends
on more variables than the original expression. In order to perform this optimisa-
tion, CompCert introduces, at assembly level, a pseudo instruction which has the
semantics of setting a register r to 0 and is assembled as a genuine bitwise ^. This
approach also works for our semantics.

6 Preservation of Memory Consumption

The C standard does not impose a model of memory consumption. In particular,
there is no requirement that a conforming implementation should make a disciplined
use of memory. A striking consequence is that the possibility of stack overflow is not
mentioned. From a formal point of view, CompCert models an unbounded memory
and therefore, as the C standard, does not impose any limit on stack consumption
of the binary code. As a result, the existing CompCert theorem is oblivious to
memory consumption of the assembly code. Though CompCert makes a wise usage
of memory, this is not explicit in the correctness statement and can only be assessed
by a thorough inspection of the code.

http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/SelectOp.html#sub
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Our memory model is finite and the memory allocation fails when no more mem-
ory is available. As a consequence, in order to prove the forward simulations for
each compiler pass, we now also need to show the preservation of memory allocation
steps. This means there is more proof effort required, but also that CompCertS
provides a stronger formal guarantee about memory consumption than CompCert.
It ensures that if the source code does not exhaust the memory, then neither does
the assembly code. In other words, the compilation ensures that the assembly code
consumes no more memory than the source code does.

Although this memory consumption preservation behaviour could exist in its own
right (without symbolic values and normalisation), the converse is not true: we need
to have a finite memory so that at least one concrete memory exists for every memory
state, and we need to preserve a bound on the memory across compiler passes.

stack frame size

SimplLocals Cminorgen Stacking

Fig. 10: Evolution of the size of stack frames

6.1 Evolution of Stack Memory Usage throughout Compilation

The memory is split into three distinct uses in CompCert: global variables, dy-
namically allocated memory (e.g. through malloc) and stack memory. The memory
for global variables is statically known and dynamically allocated memory does not
change throughout the compilation passes. Only the stack memory is deeply im-
pacted by the compiler. Fig. 10 shows the evolution of the size of the stack frame
for one given function across compiler passes. We define the size of a stack frame as
the sum of the maximally aligned sizes of its blocks. Formally, if a stack frame is
composed of blocks {b1, . . . , bn}, the size is defined as:

size_frame({b1, . . . , bn},m) ,
n∑
i

next_aligned(size(m, bi), 8)

where next_aligned(x, a) returns the smallest integer larger than or equal to x which
is divisible by a. Reasoning about maximally aligned sizes of blocks is consistent with
our allocation algorithm (see [5]) and will be important in the following. Three passes
are distinguished, which modify the memory usage:

– First, the SimplLocals pass introduces pseudo-registers for certain variables,
which are pulled out of memory. This pass reduces the memory usage of functions
and therefore satisfies the requirement that compilation should reduce memory
usage.

– Then, the Cminorgen pass allocates a unique stack frame containing all the re-
maining variables of a function. This pass may introduce some padding to ensure
proper alignment properties. However, the size of the frames always decreases,
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thanks to the fact that we are considering maximally aligned sizes, therefore we
have already accounted for the maximal amount of padding necessary. It might
even be the case that we have counted too much padding and the global size of
the frame will decrease. Hence, this pass preserves the memory usage.

– Finally, the remaining problematic pass is the Stacking pass which builds activa-
tion records from stack frames. This pass makes explicit some low-level data (e.g.
the return address or the space for spilled locals) and is responsible for an increase
of the memory usage. In the following, we explain how we solve this discordance
and ensure nonetheless a decreasing usage of memory across the compiler passes.

6.2 The Stacking Compiler Pass

The Stacking pass transforms Linear programs into Mach code. The Linear stack
frame consists of a single block containing the local variables of the function. The
Mach stack frame embeds the Linear stack frame together with additional data,
namely the return address of the function, the spilled pseudo-registers that could
not be allocated in machine registers, the callee-save registers, and the outgoing
arguments to function calls.

6.2.1 Provisioning memory.

In order to fit the Stacking pass into the decreasing memory usage framework, our
solution is to provision memory from the beginning of the compilation chain, i.e. from
the C language. Hence, we parameterise the semantics of all intermediate languages,
from C to Linear , with an oracle ns which specifies, for each function f , the additional
space that is needed. The semantics therefore include special operations that reserve
some space at function entry and release it at function exit. Below are the relevant
rules for the RTL language (other languages have similar, if not identical rules).

FunEntry
alloc m1 0 (stacksize f) = bm2, stkc reserve_boxes m2 (ns f) = bm3c
Callstate s f args m1 → State s f stk (entrypoint f) (init_rs f args) m3

FunExit
f !pc = bIreturn rc

free m1 stk 0 (stacksize f) = bm2c release_boxes m2 (ns f) = bm3c
State s f stk pc rs m1 → Returnstate s (rs r) m3

The FunEntry rule describes the transition from a Callstate, with a call stack s

(which represents the stack of program points in parent functions where the execution
should return afterwards, i.e. a continuation) where we are just about to enter a
function f with arguments args in memory state m, to a regular State with the
appropriate stack block stk , program counter entrypoint f , register state initialised
from the arguments init_rs f args and memory m3 set up. In CompCert, the end
memory is simply the result of allocating the stack block with the alloc operation
of the memory model. In CompCertS, we also reserve a number of boxes (the same
notion of boxes that was defined in Section 4) with the reserve_boxes operation
for the additional space that will be needed to concretely lay out the stack frame of
the function at the Mach and assembly levels.

http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/RTL.html#exec_function_internal
http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/RTL.html#exec_Ireturn
http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/MemReserve.html#reserve_boxes
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Symmetrically, the FunExit rule describes the transition from a regular State

where the program counter points to an Ireturn r instruction (return with the value
stored in register r). In this case, the resulting state is a Returnstate with an updated
memory state m3. In CompCert, m3 is simply the result of freeing (deallocating)
the stack block stk . In CompCertS, we also release the appropriate number of boxes
with the release_boxes operation.

In the Mach and assembly languages, no more boxes are reserved or released
because the stack is completely laid out and no extra memory will be needed in the
future.

These boxes that we reserve and release are just abstract information that we keep
in the memory state but are not related to actual memory blocks. We maintain the
invariant that the size of all blocks plus the size of all reserved boxes does not exceed
some predetermined threshold . For most compiler passes, the amount of boxes
reserved for a function call doesn’t change and these reserve and release operations
are easy to preserve across these passes. For the Stacking pass, we leverage these
boxes associated with the Linear function call to justify the larger stack block in
Mach.

Consider the example in the following picture. On the left, the stack frame for
Linear is represented, together with 2 additional boxes. On the right, the stack frame
for Mach is represented: no additional boxes are reserved but the stack block is larger
to accomodate for the outgoing arguments to function calls, spilled variables, or the
return address. The oracle ns is correct if the amount of boxes that is reserved is
sufficient to hold this extra space in Mach. In such a case, we maintain that the
memory usage for a Linear function is not smaller than the memory usage for the
corresponding Mach function and therefore preserve that the memory usage for the
whole program in Mach does not exceed the maximum memory size we allow.

Linear
stack frame

+ 2 boxes

spilled variables
outgoing arguments

pointer to parent frame
return address

≥

The question of how to compute such a correct oracle ns remains to be discussed.
It may be possible to derive an over-approximation of the needed stack space for each
function from a static analysis. However, the estimate would probably be very rough
as, for instance, it seems unlikely that the impact of register allocation could be
modelled accurately. Instead, as the exact amount of additional memory space is
known during the Stacking pass, we construct the oracle ns as a byproduct of the
compilation. In other words, the compiler returns not only an assembly program
but also a mapping that associates with each function of the program the quantity
of additional stack space required. Note that the construction is not circular since
the oracle is only needed for the correctness proof of the compiler and not by the
compiler itself. CompCertS’ final theorem takes the form of Theorem 6.
Theorem 6 Suppose that (tp,ns) is the result of the successful compilation of the
program p. If tp has the behaviour bh ′, then there exists a behaviour bh such that bh

is a behaviour of p with oracle ns and bh ′ improves on the behaviour bh.
bh ′ ∈ ASem(tp) ⇒ ∃bh.bh ∈ CSem(p,ns) ∧ bh ⊆ bh ′.

http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/MemReserve.html#release_boxes
http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/Memory.html#Mem.wfm_alloc_ok
http://www.cs.yale.edu/homes/wilke-pierre/jar18/doc/html/Compiler.html#transf_c_program_correct
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Fig. 11: Recycling memory

The only difference with CompCert is that the C semantics is instrumented by the
oracle ns computed by the compiler. Though not completely explicit, Theorem 6
ensures that the absence of memory overflows is preserved by compilation. The fun-
damental reason is that the failure to allocate memory results in an observable going
wrong behaviour. On the contrary, if the source code does not have a going wrong
behaviour, neither does the assembly. It follows that if the C source succeeds at allo-
cating memory, so does the assembly. Hence, CompCertS ensures that the absence
of memory overflows is preserved by compilation.

6.2.2 Recycling memory.

The semantics of function calls now reserve some amount of memory space on top
of the space for the stack data. Since this operation may fail if too much memory is
requested, we should thrive to make this amount as low as possible so that as many
programs as possible have a defined semantics. We have seen that our oracle ns

accurately predicts the total amount of stack space that will be needed at the Mach
level (by construction), however some compiler passes – SimplLocals in particular –
may forget some blocks and therefore throw away some memory space. We can reuse
this freed space and therefore have a weaker requirement on the source semantics.
To do so, we introduce another parameter sl (for SimplLocals) that gives for every
function the amount of memory space that will be freed by SimplLocals, and that
can therefore not be reserved in advance with a reserve_boxes operation.

Example 5 Consider a function with long-integer local variables x and y, as illus-
trated in Fig. 11, where ns(f) = 20 additional bytes are needed for the Stacking
pass. During SimplLocals , y is transformed into a temporary while x is kept and
allocated on the stack. The naive first solution that we implemented was to reserve
directly from the C level the 20 needed bytes, as shown in Fig. 11a. However, this
results in over provisioning memory because we request 36 bytes in total (2 long-
typed variables and 20 reserved bytes), where we need no more than 28 bytes in the
next compilation stage. Instead of throwing away the space for the y variable, we can
reuse it as additional space (see Fig. 11b). As a result we only require 12 additional
bytes at the C level, or 28 bytes in total. This memory consumption then stays the
same in the next compilation stage.

The amount of requested stack space is therefore lower at the C level than it would
be using the naive approach of requesting the whole amount necessary. Below is a
picture representing the amount requested for a selection of intermediate languages,
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for a function f . The parameter sl is also obtained as a byproduct of the compiler,
just like the oracle ns discussed above.

C Clight RTL Mach Asm

ns(f)− sl(f) ns(f) ns(f) 0 0

Using this recycling principle, we slightly relax the requirements for having a
defined C semantics, therefore making our formal semantic preservation theorem
applicable to more programs.

6.3 About function inlining and tailcall recognition

Our current implementation of CompCertS does not support compiler optimisa-
tions that deeply modify the structure of stack blocks such as function inlining and
tailcall recognition. We briefly explain the difficulties raised by these optimisations
and sketch our ideas to deal with those in future work.

Those optimisations change the order in which stack blocks are allocated/freed
and additional boxes are reserved/released. Looking only at stack blocks allocation-
s/deallocations, the inlining of a function f into a function g transforms the sequence
of events alloc f ; alloc g; free g; free f into the sequence alloc f ; free f (as
shown in Fig. 12a). If the function call to g gets transformed into a tail-call, the same
sequence becomes alloc f ; free f ; alloc g; free g instead (as shown in Fig. 12b).

Fig. 12 pictures the matching relation (with dashed lines) that we should capture
between source and target programs. The issue is that all theorems we have about
memory injection and memory allocation/deallocation require that every operation
in the source program has a matching operation in the target program, and the
transformations induced by function inlining and tailcall recognition do not fit in
that setting. Instead, there are allocations and deallocations that have no counter-
part in the target program (for the inlined function); or operations are reordered,
making it impossible to use the available lemmas. While appropriate lemmas exist
in the original CompCert, they are more subtle to prove in CompCertS because
allocations and deallocations affect the set of valid concrete memories and therefore
the behaviour of normalisations: it is unclear how to preserve the behaviour of nor-
malisations in such cases; a more thorough study of these transformations is needed
to reprove such theorems.

We would also need to record a subtle relation between the sizes of the memories
in the source and target programs, to capture the fact that the target program has
already freed its stack block (and associated provisioned memory boxes), while the
source program has not yet (e.g. in the second matching of Fig. 12b).

7 Related Work

Formal semantics for C. The first formal realistic semantics of C is due to Nor-
rish [18]. More recent works [9,12,13] aim at providing a formal account of the
subtleties of the C standard. Hathhorn et al. [9] present an executable C semantics
within the K framework. They extend the previous work of Ellison et al. [8] to pre-
cisely characterise the undefined behaviours of C. Krebbers [12,13] gives a formal
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alloc f alloc g free g free f

alloc f free f

(a) Memory operations and matching relation for function inlining
alloc f alloc g free g free f

alloc f free f alloc g free g

(b) Memory operations and matching relation for tailcall recognition

Fig. 12: Transformations induced by function inlining and tailcall recognition

account of sequence points and non-aliasing. These notions are probably the most
intricate of the ISO C standard. Memarian et al. [16] realise a survey among C ex-
perts, in which they aim at capturing the de facto semantics of C. They remark that
uninitialised values and pointer arithmetic are commonly used.

Our work builds upon the CompCert C compiler [14]. The semantics and the
memory model used in the compiler are close to ISO C. Our previous works [3,
4] show how to extend the support for pointer arithmetic and adapt most of the
front-end of CompCert to this extended semantics with the notable exception of
the SimplLocals pass which requires a sophisticated proof argument detailed in the
present paper.

CompCert and memory consumption. CompCert observes the I/O behaviour of
programs but not their resource usage. Carbonneaux et al. [7] propose a logic for
reasoning, at source level, on the resource consumption of target programs compiled
by CompCert. They instrument the event traces to include resource consumption
events that are preserved by compilation, and use the compiler itself to determine
the actual size of stack frames. We borrow from them the idea of using a compiler-
generated oracle. Their approach to finite memory is more lightweight than ours and
does not require modifying the memory model. However, our ambition to reason
about symbolic values in CompCert requires more intrusive changes.

CompCertTSO [20] is a version of CompCert implementing a TSO relaxed
memory model. It also models a finite memory where pointers are pairs of integers.
Their soundness theorem is oblivious to out-of-memory errors. They remark that they
could exploit memory bounds computed by the compiler, but do not implement it.
In terms of expressiveness, their semantics and ours seem to be incomparable. For
instance, CompCertTSO gives a defined semantics to the comparison of arbitrary
pointers, we do not. That is because our semantics requires that the evaluation
of symbolic values is the same in every valid concrete memory, and a comparison
p1 < p2 may evaluate differently depending on the memory layout, if p1 and p2 are
pointers to different objects; this would therefore result in undefined behaviour, just
like in CompCert. Yet, the example of Section 2.3.1 is not handled by the formal
semantics of CompCertTSO.
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Pointers as integers. Kang et al. [11] propose a hybrid memory model where an
abstract pointer is mapped to a concrete address at pointer-integer cast time. Their
semantics may get stuck at cast-time if there is not enough memory available. For our
semantics, a cast is a no-op and our semantics may get stuck at allocation time. They
study aggressive program optimisations but do not preserve memory consumption.
In CompCertS, we consider simpler optimisations but implemented in a working
compiler for a real language. Moreover, we ensure that the memory consumption
is preserved by compilation. Mullen et al. [17] present Peek, a framework to cer-
tify peephole optimisations within CompCert. Peek leverages a low-level memory
model, ASMZ32, for the assembly language of CompCert where pointers are in-
tegers. This more defined semantics allows to validate peephole optimisations that
are unsound for the more abstract model of CompCert. They give an axiomatic
definition of a memory allocator and prove that, in the absence of memory exhaus-
tion, their low-level memory model simulates the memory model of CompCert. In
CompCertS, we provide a stronger guarantee and ensure the preservation of mem-
ory usage using a more high-level memory model. In theory, because our normalise

function may return undef, our semantics is less defined than ASMZ32. Nonetheless,
we believe that most, if not all, of the peephole optimisations presented by Mullen
et al. are also sound for our semantics.

8 Conclusion

We present CompCertS, an extension of the CompCert compiler that is based on a
more defined semantics and provides additional guarantees about the compiled code.
Programs performing low-level bitwise operations on pointers are now covered by the
semantics preservation theorem, and can thus be compiled safely. CompCertS also
guarantees that the compiled program does not require more memory than the source
program. This is done by instrumenting the semantics with an oracle providing, for
each function, the size of the stack frame.

CompCertS compiles down to assembly; compared to CompCert, we adapted
all the 4 passes of the front-end and 12 out of 14 passes of the back-end. This
whole work amounts to more than 210k lines of Coq code, which is 60k more than
the original CompCert 2.4. This is the result of approximately 3 person years.
CompCertS does not feature the inlining and tailcall optimisations. The inlining
optimisation may increase the memory consumption of functions. This disagrees with
our decreasing memory size policy, but we should be able to provision memory in
a similar way as we did for the Stacking pass. The tail call recognition transforms
regular function calls into tail calls when appropriate. Its proof cannot be adapted
in a straightforward way because of the additional stack space we introduced for
the Stacking pass: the release of those blocks does not happen at the same place
before and after the transformation. We need to investigate further the proof of this
optimisation and come up with a more complex invariant on memory states.

As future work, we shall investigate how security-related program transforma-
tions would benefit from the increased expressiveness of CompCertS. Recently,
Blazy and Trieu [6] pioneered the integration of state-of-the-art obfuscations within
CompCert. Data obfuscations based on bitwise operations cannot be proved sound
for pointers with CompCert. Lastly, currently every function stores its stack frame
in a distinct block, even at the assembly level. An ultimate compiler pass that merges
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blocks into a concrete stack is possible with our finite memory and would bring even
more confidence in CompCertS.
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