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Linux Red-Black Trees: include/linux/rbtree.h
struct rb_node {
struct rb_node *rb_right;
struct rb_node *rb_left;
uintptr_t rb_parent_color;

};
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00101101 11011101 10001011 101101 00 1

rb_colorrb_parent

rb_node * rb_parent(rb_node * r) {
return ((rb_node *) (r -> rb_parent_color & ~3));

}
void rb_set_parent_color(rb_node * rb, rb_node * p, int color) {

rb->rb_parent_color = p | color;
}
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CompCert: a formally verified C compiler

Leroy, “Formal verification of a realistic compiler”, CACM’2009.

Theorem (CompCert’s theorem)
Let P be a C program.
If P has defined semantics ,
if CompCert successfully generates an assembly program P′,
then P′ behaves as P.

Unfortunately, the red-black tree example does not have defined semantics.
Can we achieve a similar result for this program?
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Previous work: a relaxed semantics for low-level C programs

Symbolic Memory Model: Frédéric Besson, Sandrine Blazy, and Pierre Wilke.
“A Precise and Abstract Memory Model for C Using Symbolic Values.” In:
APLAS. 2014

Front-end of the compiler: Frédéric Besson, Sandrine Blazy, and Pierre Wilke.
“A Concrete Memory Model for CompCert”. In: ITP. 2015

Features:
• defined semantics for bitwise manipulation of pointer values

• use symbolic values to represent undefined computations

• finite memory
• the allocation of memory fails when full
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CompCertS: a formally verified compiler for low-level code

Contributions of this work: whole compiler proof with the symbolic semantics

• proofs of correctness of most compiler passes of CompCert
• (no inlining or tailcall optimizations)

• preservation of the absence of memory overflows

• formal safeguard against over-aggressive optimizations
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Outline

1 CompCert and Previous Work on Symbolic Values

2 Compiler proofs: Finite memory

3 Compiler proofs: Optimizations
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CompCert’s memory model

Memory is a collection of blocks.

Locations are pairs (b,o) where b is a block identifier, and o is an offset.

int i = 3;
int * p = &i;
uintptr_t x = p | 1;
int * q = p & ~1;
assert ( p == q );

⇒

bi

bp

bx

Not captured by most existing formal semantics for C (Cholera, KCC, CH20).
Captured by Kang et al.’s semantics.

Besson, Blazy, Wilke CompCertS: a Memory-Aware Verified C Compiler using Pointer as Integer Semantics 7 / 23



CompCert’s memory model

Memory is a collection of blocks.

Locations are pairs (b,o) where b is a block identifier, and o is an offset.

int i = 3;
int * p = &i;
uintptr_t x = p | 1;
int * q = p & ~1;
assert ( p == q );

⇒ 3

bi

bp

bx

Not captured by most existing formal semantics for C (Cholera, KCC, CH20).
Captured by Kang et al.’s semantics.

Besson, Blazy, Wilke CompCertS: a Memory-Aware Verified C Compiler using Pointer as Integer Semantics 7 / 23



CompCert’s memory model

Memory is a collection of blocks.
Locations are pairs (b,o) where b is a block identifier, and o is an offset.

int i = 3;
int * p = &i;
uintptr_t x = p | 1;
int * q = p & ~1;
assert ( p == q );

⇒
3

bi

(bi,0)
bp

bx

Not captured by most existing formal semantics for C (Cholera, KCC, CH20).
Captured by Kang et al.’s semantics.

Besson, Blazy, Wilke CompCertS: a Memory-Aware Verified C Compiler using Pointer as Integer Semantics 7 / 23



CompCert’s memory model

Memory is a collection of blocks.
Locations are pairs (b,o) where b is a block identifier, and o is an offset.

int i = 3;
int * p = &i;
uintptr_t x = p | 1;
int * q = p & ~1;
assert ( p == q );

⇒
3

bi

(bi,0)
bp

undef

bx

Not captured by most existing formal semantics for C (Cholera, KCC, CH20).
Captured by Kang et al.’s semantics.

Besson, Blazy, Wilke CompCertS: a Memory-Aware Verified C Compiler using Pointer as Integer Semantics 7 / 23



Overcoming CompCert’s limitations: symbolic values

Frédéric Besson, Sandrine Blazy, and Pierre Wilke. “A Precise and Abstract
Memory Model for C Using Symbolic Values.” In: APLAS. 2014

int i = 3;
int * p = &i;
uintptr_t x = p | 1;
int * q = p & ~1;
assert ( p == q );

⇒

3

bi

(bi,0)
bp

(bi,0) | 1
bx
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int i = 3;
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assert ( p == q );⇒
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Normalization: semantics

normalize : mem → sval → val

b

b′

m

sv = (b,0)==((b,0) | 1)& ∼ 1

cm1

cm2

cm3

cm4

cm5

cm6

0 16 32 48 64 80 96 112

Concrete memories of m

We expect that normalize m sv = 1
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Normalization: semantics
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CompCertS overall architecture

C

Clight

C]minor

Cminor

RTL

Linear

Mach

ASM

• use symbolic values instead of values
• introduce calls to normalization at:

• memory accesses
• conditionals

• adapt the proof of semantic preservation for
each pass
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Proofs of semantic preservation: simulation relations

Each compiler pass is proved semantics preserving using simulation relations.

Theorem (Forward simulation)
Every semantic step in the source program can be simulated by a sequence of
steps in the target program.

source program target program

S1 S2

S′1 S′2

R

R

All such preservation theorems are eventually composed into a preservation
theorem from C to assembly.
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2. Compiler proofs: Finite memory
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The need for finite memory
Because we map (an unbounded set of) blocks onto a (finite) address space,
we model a finite memory.

For every memory m, there must exist a concrete memory.

b1 b2 b3

b1 b2 b3

b4

m

232

As a result, memory allocation fails when the memory is full
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Preservation of the absence of memory overflows

If the allocation of a block succeeds before the transformation,
then it also succeeds after.

m1

m2

+

+
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Decreasing memory size: invariant
For every compiler pass that transforms memory state m1 into m2:

‖m2‖ ≤ ‖m1‖

m1

m2

≤

‖m1‖

‖m2‖

⇒ preservation of the absence of memory overflows
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Problem: the Stacking pass

stack frame stack frame

return address

spilled locals

callee-save registers

outgoing arguments

This compiler pass makes memory usage grow.

Solution: we preallocate for every function additional memory
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Parameterizing the semantics with oracles for finite memory

Semantics are parameterized with oracles ns : fn_name → Z

blocks for function f

ns(f ) extra blocks

Cminorgen Stacking

The compiler outputs such an oracle.
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New semantic preservation theorem

Theorem (transf_c_program_preservation)
Let P be a C program.
If CompCert successfully generates an assembly program P′ and an oracle ns,
If P has defined semantics with oracle ns,
then P′ behaves as P.

This new theorem gives us the additional guarantee that for well-defined C
programs, the compiled program will not run out of memory.
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3. Compiler proofs: Optimizations
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Compiler optimizations: constant propagation

int main(){
int x = 1;
//
uintptr_t p = &x >> 1;
//
f(p);
//
return x;

}

It is sound to optimize the return statement into return 1; in CompCert
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Compiler optimizations: pointer dependence

In our symbolic semantics:

int main(){
int x = 1;
// [x 7→ 1]
uintptr_t p = &x >> 1;
// [x 7→ 1;p 7→ dep(&x)]
f(p);
//
return x;

}

We enrich the abstract domain: dep(&x)
• symbolic values from which a pointer to x may be derived

Because our semantics are more permissive, our optimizations are more
conservative.
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Compiler optimizations – conclusion

In the existing CompCert, optimizations are written with prudence in order to
avoid counterintuitive behaviors.

Our symbolic semantics provide a formal safeguard to avoid those
“miscompilations”.
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Conclusion

CompCertS: a Memory-Aware Verified C Compiler using Pointer as Integer
Semantics

• formal guarantees on the memory consumption of programs
• the compiler does not introduce memory overflow

• formal guarantees for programs that perform bitwise operations on pointers
• optimizations are more conservative, in a formal way

Possible applications:

• formal verification of system code (Linux red-black trees, implementations of
malloc)

• formal verification of obfuscations (variable splitting)

• software fault isolation (masking pointers)
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