
Master level Internship: Formalizing Hardware Security Mechanisms: a

new HDL for modular hardware proofs

Pierre Wilke
pierre.wilke@centralesupelec.fr

CIDRE-SUSHI team

Context The security of applications eventually depends on the security of all the abstractions layers they are
built upon. The application itself may contain some hardening techniques, it may benefit from isolation provided
by the operating system (OS), and it may also be secured through the use of hardware security mechanisms. For
critical applications, formal methods (e.g. static analysis, model checking, formal proof) have been successfully
applied at the source code level (e.g. Astrée, VST), at the compiler level (e.g. CompCert [7]), at the OS level
(seL4 [6], CertiKOS [5]), and more recently at the hardware level (e.g. Kami [4], Kôika [3]).

Several of these approaches are based on the Coq proof assistant,1 which allows for formal definition of semantics
and proofs. The Coq proof assistant is a program that helps building proofs and rigorously checks that the proofs
are correct. The Kôika language is a high-level hardware design language (HDL) embedded in Coq, together with
a verified compiler to Verilog. Thanks to this approach, one can design a circuit in the high-level HDL (Kôika) and
generate from that a description in a low-level HDL (Verilog) that standard hardware tools can use to synthetise
the circuit on FPGA. The authors proved that the compiler preserves the semantics of Kôika.

In the SUSHI group, we aim at proving security properties guaranteed by hardware/software mechanisms. We
proposed an approach to prove security properties about Kôika designs. This requires to compile Kôika designs to
an intermediate representation more suitable than the Kôika representation to formal verification. We proved that
this compilation is correct and successfully apply this methodology to prove the security of a shadow stack2 in a
RISC-V processor [2]. This forms a foundation for proving more complex security mechanisms.

Our current approach consists in automatically compiling Kôika designs to a more explicit representation, and
then manually proving the properties of interest on this representation. This approach can still be improved. First,
our approach is monolithic. Indeed, the semantics of Kôika deals with complex interactions between so-called atomic
rules inspired by BlueSpec [1], and actions in different rules may conflict with each other and induce global effects.
It is therefore non-trivial to reason modularly about Kôika designs. Second, our approach consists in compiling
Kôika designs to a more explicit representation, about which we managed to prove our properties of interest. This
means that the proof we end up writing is not about the Kôika design itself, but about something automatically
generated from it, which makes proofs very fragile (not robust to changes in the design).

Other HDLs exist which, like Kôika, enable to write higher level code and compile to Verilog/VHDL. Among these
HDLs, Chisel relies on the Scala language for the ”meta-programming” aspects, and compiles into an intermediate
representation called FIRRTL (Flexible Intermediate Representation for RTL).3 Unlike Kôika, the Chisel language
has a more straightforward semantics (e.g. no rule cancellation) and should be more amenable to modular reasoning.

Internship The goal of the internship is to contribute to the formalization of the FIRRTL language in Coq,
already started in our team.

Here are the main steps of the internship:

• get familiar with Coq and the Kôika language;

• get familiar with the RISC-V processor written in that language and the proof methodology that we used
in [2];

• contribute to the formalization of the FIRRTL language in Coq;

• propose some proof techniques for hardware designs written in that language. These techniques should allow
for modular reasoning.

• translate the proofs of [2] into this new framework, hopefully showing that the new framework makes proofs
easier to write.

1https://coq.inria.fr
2https://en.wikipedia.org/wiki/Shadow_stack
3https://www.chisel-lang.org/

1



Required skills or interests The candidate should be familiar with the Coq proof assistant. Knowledge about
hardware design languages (e.g. Chisel, FIRRTL, and Verilog/VHDL) is a plus.

Institute The internship will take place at CentraleSupélec in Rennes, France, in the soon-to-be-created SUSHI
Inria team4. This team is part of the IRISA laboratory.5 The internship will be advised by Pierre Wilke and
Guillaume Hiet.

Practical aspects The internship will last 5 months, starting from February, 2024. The intern will receive a
”gratification” of 609€ per month. Housing options may be available on campus, or close to the campus.

This internship could be followed by a Ph.D. thesis on similar subjects.

References

[1] Arvind. “Bluespec: A language for hardware design, simulation, synthesis and verification Invited Talk”. In:
1st ACM & IEEE International Conference on Formal Methods and Models for Co-Design (MEMOCODE
2003), 24-26 June 2003, Mont Saint-Michel, France, Proceedings. IEEE Computer Society, 2003, p. 249. doi:
10.1109/MEMOCODE.2003.10000. url: https://doi.ieeecomputersociety.org/10.1109/MEMOCODE.2003.
10000.

[2] Matthieu Baty et al. “A Generic Framework to Develop and Verify Security Mechanisms at the Microarchitec-
tural Level: Application to Control-Flow Integrity”. In: 36th IEEE Computer Security Foundations Symposium,
CSF 2023, Dubrovnik, Croatia, July 10-14, 2023. IEEE, 2023, pp. 372–387. doi: 10.1109/CSF57540.2023.
00029. url: https://doi.org/10.1109/CSF57540.2023.00029.

[3] Thomas Bourgeat et al. “The essence of Bluespec: a core language for rule-based hardware design”. In: Proceed-
ings of the 41st ACM SIGPLAN International Conference on Programming Language Design and Implemen-
tation, PLDI 2020, London, UK, June 15-20, 2020. Ed. by Alastair F. Donaldson and Emina Torlak. ACM,
2020, pp. 243–257. doi: 10.1145/3385412.3385965. url: https://doi.org/10.1145/3385412.3385965.

[4] Joonwon Choi et al. “Kami: a platform for high-level parametric hardware specification and its modular
verification”. In: Proc. ACM Program. Lang. 1.ICFP (2017), 24:1–24:30. doi: 10.1145/3110268. url: https:
//doi.org/10.1145/3110268.

[5] Ronghui Gu et al. “CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels”.
In: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA,
USA, November 2-4, 2016. Ed. by Kimberly Keeton and Timothy Roscoe. USENIX Association, 2016, pp. 653–
669. url: https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu.

[6] Gerwin Klein et al. “seL4: formal verification of an operating-system kernel”. In: Commun. ACM 53.6 (2010),
pp. 107–115. doi: 10.1145/1743546.1743574. url: https://doi.org/10.1145/1743546.1743574.

[7] Xavier Leroy and Sandrine Blazy. “Formal verification of a C-like memory model and its uses for verifying pro-
gram transformations”. In: Journal of Automated Reasoning 41.1 (2008), pp. 1–31. url: http://xavierleroy.
org/publi/memory-model-journal.pdf.

4The team is currently CIDRE: https://team.inria.fr/cidre/
5https://www.irisa.fr/en

2


